题目内容
已知是定义在上的奇函数.当时,,则不等式的解集用区间表示为 .
解析:
因为是定义在上的奇函数,所以易知时,
解不等式得到的解集用区间表示为
(本小题满分12分)已知函数是定义在上的奇函数,且,
(1)确定函数的解析式;
(2)用定义证明在上是增函数;
(3)解不等式.
【解析】第一问利用函数的奇函数性质可知f(0)=0
结合条件,解得函数解析式
第二问中,利用函数单调性的定义,作差变形,定号,证明。
第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。
已知函数是定义在R上的奇函数,且,在[0,2]上是增函
数,则下列结论:
(1)若,则;[来源:Z§xx§k.Com]
(2)若且;
(3)若方程在[-8,8]内恰有四个不同的根,则;
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
已知是定义在上的不恒为零的函数,且对于任意实数都有, 则
(A)是奇函数,但不是偶函数 (B)是偶函数,但不是奇函数
(C)既是奇函数,又是偶函数 (D)既非奇函数,又非偶函