题目内容
已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则( )
分析:由题意可得给a,b赋值,即令a=b=1,可得f(1)=0,再令a=b=-1,可得f(-1)=0,令a=x,b=-1,即可得到答案.
解答:解:由题意可得:令a=b=1,则有f(1)=2f(1),
所以f(1)=0,
再令a=b=-1,则有f(1)=-2f(-1),
所以f(-1)=0,
若令a=x,b=-1,
所以有f(-x)=-f(x)+xf(-1)=-f(x),即f(-x)=-f(x),
所以f(x)为奇函数.
故选A.
所以f(1)=0,
再令a=b=-1,则有f(1)=-2f(-1),
所以f(-1)=0,
若令a=x,b=-1,
所以有f(-x)=-f(x)+xf(-1)=-f(x),即f(-x)=-f(x),
所以f(x)为奇函数.
故选A.
点评:本题考查了函数奇偶性的定义,即f(-x)与f(x)的关系,而研究抽象函数的奇偶性一般运用的方法是赋值法,此题是个基础题.
练习册系列答案
相关题目