题目内容
【题目】已知函数f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然对数的底数).
(1)若f(x)是(0,+∞)上的单调递增函数,求实数a的取值范围;
(2)当a∈时,证明:函数f(x)有最小值,并求函数f(x)的最小值的取值范围.
【答案】(1) (2)(-2e,-2).
【解析】试题分析:(1)由题意得当x>0时,函数f′(x)≥0恒成立,再分离变量法转化为对应函数最值,根据导数求对应函数单调性,进而确定最值,得实数a的取值范围;(2)先研究导函数单调性,再根据零点存在定理得导函数有唯一一个零点,即为函数极小值点,也是最小值点,最后利用导数研究最小值函数单调性,即得最小值取值范围
试题解析:(1)f′(x)=2ex+(2x-4)ex+2a(x+2)=(2x-2)ex+2a(x+2),依题意,当x>0时,函数f′(x)≥0恒成立,即a≥-恒成立,记g(x)=-,则g′(x)=-
=-<0,所以g(x)在(0,+∞)上单调递减,所以g(x)<g(0)=,所以a≥.
故a的取值范围为.
(2)因为[f′(x)]′=2xex+2a>0,所以y=f′(x)是(0,+∞)上的增函数,又f′(0)=4a-2<0,f′(1)=6a>0,所以存在t∈(0,1)使得f′(t)=0,
又当x∈(0,t)时,f′(x)<0,当x∈(t,+∞)时,f′(x)>0,
所以当x=t时,f(x)min=f(t)=(2t-4)et+a(t+2)2.且有f′(t)=0a=-,
则f(x)min=f(t)=(2t-4)et-(t-1)(t+2)et=et(-t2+t-2),t∈(0,1).
记h(t)=et(-t2+t-2),则h′(t)=et(-t2+t-2)+et(-2t+1)=et(-t2-t-1)<0,
所以h(1)<h(t)<h(0),
即f(x)的最小值的取值范围是(-2e,-2).