题目内容
设椭圆: 的离心率为,点(,0),(0,),原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为(,0),点在椭圆上(与、均不重合),点在直线上,若直线的方程为,且,试求直线的方程.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为(,0),点在椭圆上(与、均不重合),点在直线上,若直线的方程为,且,试求直线的方程.
,直线的方程为
解 (Ⅰ)由得
由点(,0),(0,)知直线的方程为,
于是可得直线的方程为
因此,得,,,
所以椭圆的方程为
(Ⅱ)由(Ⅰ)知、的坐标依次为(2,0)、,
因为直线经过点,所以,得,
即得直线的方程为
因为,所以,即
设的坐标为,则
得,即直线的斜率为4
又点的坐标为,因此直线的方程为
由点(,0),(0,)知直线的方程为,
于是可得直线的方程为
因此,得,,,
所以椭圆的方程为
(Ⅱ)由(Ⅰ)知、的坐标依次为(2,0)、,
因为直线经过点,所以,得,
即得直线的方程为
因为,所以,即
设的坐标为,则
得,即直线的斜率为4
又点的坐标为,因此直线的方程为
练习册系列答案
相关题目