题目内容

【题目】如图,在底面是菱形的四棱锥P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,点E在PD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

【答案】解:(Ⅰ)证明因为底面ABCD是菱形,∠ABC=60°,

所以AB=AD=AC=a,在△PAB中,

由PA2+AB2=2a2=PB2知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解:作EG∥PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,连接EH,

则EH⊥AC,∠EHG即为二面角θ的平面角.

又PE:ED=2:1,所以

从而 ,θ=30°.

(Ⅲ)解法一以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.

由题设条件,相关各点的坐标分别为 .

所以

设点F是棱PC上的点, ,其中0<λ<1,

=

解得 .即 时,

亦即,F是PC的中点时, 共面.

又BF平面AEC,所以当F是棱PC的中点时,BF∥平面AEC.

解法二:当F是棱PC的中点时,BF∥平面AEC,证明如下,

证法一:取PE的中点M,连接FM,则FM∥CE.①

,知E是MD的中点.

连接BM、BD,设BD∩AC=O,则O为BD的中点.

所以BM∥OE.②

由①、②知,平面BFM∥平面AEC.

又BF平面BFM,所以BF∥平面AEC.

证法二:

因为 = =

所以 共面.

又BF平面ABC,从而BF∥平面AEC.


【解析】(I)证明PA⊥AB,PA⊥AD,AB、AD是平面ABCD内的两条相交直线,即可证明PA⊥平面ABCD;(II)求以AC为棱,作EG∥PA交AD于G,作GH⊥AC于H,连接EH,说明∠EHG即为二面角θ的平面角,解三角形求EAC与DAC为面的二面角θ的大小;(Ⅲ)证法一F是棱PC的中点,连接BM、BD,设BD∩AC=O,利用平面BFM∥平面AEC,证明使BF∥平面AEC.

证法二建立空间直角坐标系,求出 共面,BF平面AEC,所以当F是棱PC的中点时,BF∥平面AEC.还可以通过向量表示,和转化得到 是共面向量,BF平面ABC,从而BF∥平面AEC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网