题目内容
8.用数字2,3组成四位数字,则数字2,3至少都出现一次的概率为$\frac{7}{8}$.分析 首先确定数字中2和3的个数,当数字中有1个2,3个3时,当数字中有2个2,2个3时,当数字中有3个2,1个3时,写出每种情况的结果数,最后相加.然后求出基本事件总数,然后求解概率.
解答 解:首先确定数字中2和3 的个数,
当数字中有1个2,3个3时,共有C41=4种结果,
当数字中有2个2,2个3时,共有C42=6种结果,
当数字中有3个2,1个3时,共有有C41=4种结果,
根据分类加法原理知共有4+6+4=14种结果,
全是2,或全是3,各有一个,基本事件总数为16,
用数字2,3组成四位数字,则数字2,3至少都出现一次的概率为:$\frac{14}{16}$=$\frac{7}{8}$.
故答案为:$\frac{7}{8}$.
点评 本题考查分类计数原理,古典概型的概率问题,这种问题一般容易出错,注意分类时要做到不重不漏,本题是一个中档题,也是一个易错题,易错点在数字中重复出现的数字不好处理.
练习册系列答案
相关题目
3.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
(1)用分层抽样的方法在喜欢打篮球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,由公式K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$计算出K2≈8.333,那么你能否有99.5%的把握认为是否喜欢打篮球与性别有关?
附临界值表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,由公式K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$计算出K2≈8.333,那么你能否有99.5%的把握认为是否喜欢打篮球与性别有关?
附临界值表:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |