题目内容
(本小题满分12分)
已知常数,函数
(1)求,的值;
(2)讨论函数在上的单调性;
(3)求出在上的最小值与最大值,并求出相应的自变量的取值.
已知常数,函数
(1)求,的值;
(2)讨论函数在上的单调性;
(3)求出在上的最小值与最大值,并求出相应的自变量的取值.
(1),
(2)上为增函数,在上为减函数
(3)① 时,在处取得最小值,在处取得最大值
②时,在处取得最小值,
在 处取得最大值
③ 时,在处取得最小值,在处取得最大值.
(2)上为增函数,在上为减函数
(3)① 时,在处取得最小值,在处取得最大值
②时,在处取得最小值,
在 处取得最大值
③ 时,在处取得最小值,在处取得最大值.
试题分析:(1),
(2)∵,∴在上为增函数,在上为减函数
(3)由函数在上的单调性可知,在处取得最小值,而在处取得最大值
故有
① 时,在处取得最小值,在处取得最大值
②时,在处取得最小值,
在 处取得最大值
③ 时,在处取得最小值,在处取得最大值.
点评:中档题,二次函数的最值问题,往往有“轴定区间动”、“轴动区间定”等不同情况,关键是讨论对称轴与给定区间的相对位置。
练习册系列答案
相关题目