题目内容
【题目】设函数.
(Ⅰ)求证:当时,;
(Ⅱ)存在,使得成立,求a的取值范围;
(Ⅲ)若对恒成立,求b的取值范围.
【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ)或.
【解析】
(Ⅰ)转化求函数g(x)在(0,π]上的最大值,利用函数的导数判断单调性进而求解;
(Ⅱ)依题意即转化为求函数f(x)在(0,π]上的最小值,利用函数的导数判断单调性进而求解;
(Ⅲ)先表示出函数g(bx),将恒成立问题转化为函数求最值问题,利用函数的导数判断单调性进而求解,注意b的范围的讨论.
(Ⅰ)因为当时,,
所以在上单调递减,
又,所以当时,.
(Ⅱ)因为,
所以,
由(Ⅰ)知,当时,,所以,
所以在上单调递减,则当时,
由题意知,在上有解,所以,从而.
(Ⅲ)由,得对恒成立,
①当,0,1时,不等式显然成立.
②当时,因为,所以取,
则有,此时不等式不恒成立.
③当时,由(Ⅱ)可知在上单调递减,而,
,
成立.
④当时,当时,,
则,不成立,
综上所述,当或时,有对恒成立.
练习册系列答案
相关题目