题目内容
【题目】已知椭圆的焦距为2,过右焦点和短轴一个端点的直线的斜率为,为坐标原点.
(1)求椭圆的方程;
(2)设点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
【答案】(1);(2)详见解析.
【解析】
(1)由题意,根据过右焦点和短轴一个端点的直线的斜率为,求出,求出,即得椭圆的方程;
(2)设.把直线的方程代入椭圆的方程,韦达定理.写出直线和直线的方程,求出.根据,求出的值,即可证明直线l经过定点.
(1)由题意,得椭圆的半焦距,右焦点,上顶点,所以直线的斜率,解得,由,得,所以椭圆的方程为.
(2)设.
联立得,
,,.
直线,令得,即;
同理可得.
因为,所以;
,解之得只有满足题意,所以直线方程为,所以直线恒过定点.
【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.
方案一:每满100元减20元;
方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数 | 3 | 2 | 1 | 0 |
实际付款 | 7折 | 8折 | 9折 | 原价 |
(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;
(2)若某顾客购物金额为180元,选择哪种方案更划算?
【题目】为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.
(1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |