题目内容
【题目】已知抛物线,过的直线与抛物线相交于两点.
(1)若点是点关于坐标原点的对称点,求面积的最小值;
(2)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.
【答案】(1)(2)存在,直线的方程为;定值为
【解析】
(1)设,,直线的方程为,联立直线的方程与抛物线的方程消元,然后韦达定理可得,,然后,用将表示出来即可.
(2)假设满足条件的直线存在,其方程为,则以为直径的圆的方程为,将直线方程代入,得,然后将表示出来即可.
(1)依题意,点的坐标为,可设,,
直线的方程为,与联立得.
由韦达定理得:,,
于是,
所以当时,面积最小值,最小值为.
(2)假设满足条件的直线存在,其方程为,
则以为直径的圆的方程为,
将直线方程代入,得,
则.
设直线与以为直径的圆的交点为,,
则,,于是有
.
当,即时,为定值.
故满足条件的直线存在,其方程为.
练习册系列答案
相关题目
【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;
②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程,
其中,.
76 | 83 | 812 | 526 |