题目内容

【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面平面.现有以下四个结论:

①AD∥平面SBC;

③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;

与平面SCD所成的角为45°.

其中正确结论的序号是__________

【答案】①②④

【解析】

利用线面平行判定定理说明①的正误;利用线面平行性质定理说明②的正误;由,讨论∠ASB的锐钝可说明③的正误;利用与平面SCD所成的角等于AD与平面SCD所成的角可判断④的正误.

ABCD是圆O得直径及AB⊥CD,得四边形ABCD为正方形,则AD∥BC,

从而AD∥平面SBC,则①正确;又因为平面SAD,且平面,所以,则②正确;因为,当∠ASB为钝角时,

当∠ASB为锐角或直角时,,则③不正确;由,得与平面SCD所成的角等于AD与平面SCD所成的角,即为∠ADO,又因为∠ADO=45°,故④正确.

故答案为:①②④

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网