题目内容
【题目】已知椭圆:,,分别是椭圆短轴的上下两个端点,是椭圆的左焦点,P是椭圆上异于点,的点,若的边长为4的等边三角形.
写出椭圆的标准方程;
当直线的一个方向向量是时,求以为直径的圆的标准方程;
设点R满足:,,求证:与的面积之比为定值.
【答案】(1);(2);(3)证明见解析
【解析】
由是边长为4的等边三角形得,进一步求得,则椭圆方程可求;
由直线的一个方向向量是,可得直线所在直线的斜率,得到直线的方程,由椭圆方程联立,求得P点坐标,得到的中点坐标,再求出,可得以为直径的圆的半径,则以为直径的圆的标准方程可求;
方法一、设,求出直线的斜率,进一步得到直线的斜率,得到直线的方程,同理求得直线的方程,联立两直线方程求得R的横坐标,再结合在椭圆上可得与的关系,由求解;
方法二、设直线,的斜率为k,得直线的方程为结合,可得直线的方程为,把与椭圆方程联立可得,再由在椭圆上,得到,从而得到,得结合,可得直线的方程为与线的方程联立求得再由求解.
解:如图,由的边长为4的等边三角形,得,且.
椭圆的标准方程为;
解:直线的一个方向向量是,
直线所在直线的斜率,则直线的方程为,
联立,得,
解得,.
则的中点坐标为,.
则以为直径的圆的半径.
以为直径的圆的标准方程为;
证明:方法一、设,
直线的斜率为,由,得直线的斜率为.
于是直线的方程为:.
同理,的方程为:.
联立两直线方程,消去y,得.
在椭圆上,
,从而.
,
.
方法二、设直线,的斜率为k,,则直线的方程为.
由,直线的方程为,
将代入,得,
是椭圆上异于点,的点,,从而.
在椭圆上,
,从而.
,得.
,直线的方程为.
联立,解得,即.
.
【题目】某班随机抽查了名学生的数学成绩,分数制成如图的茎叶图,其中组学生每天学习数学时间不足个小时,组学生每天学习数学时间达到一个小时,学校规定分及分以上记为优秀,分及分以上记为达标,分以下记为未达标.
(1)根据茎叶图完成下面的列联表:
达标 | 未达标 | 总计 | |
组 | |||
组 | |||
总计 |
(2)判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.
参考公式与临界值表:,其中.
【题目】某学校为鼓励家校互动,与某手机通讯商合作,为教师办理流量套餐.为了解该校教师手机流量使用情况,通过抽样,得到位教师近年每人手机月平均使用流量(单位:)的数据,其频率分布直方图如下:
若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.
(Ⅰ) 从该校教师中随机抽取人,求这人中至多有人月使用流量不超过 的概率;
(Ⅱ) 现该通讯商推出三款流量套餐,详情如下:
套餐名称 | 月套餐费(单位:元) | 月套餐流量(单位:) |
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值 流量,资费元;如果又超出充值流量,系统就再次自动帮用户充值 流量,资费元/次,依次类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.
学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.