题目内容
20.已知矩阵A=$(\begin{array}{l}{2}&{1}\\{4}&{3}\end{array})$,B=$(\begin{array}{l}{1}&{1}\\{0}&{-1}\end{array})$(1)求A的逆矩阵A-1;
(2)求矩阵C,使得AC=B.
分析 (1)求出矩阵的行列式,即可求A的逆矩阵A-1;
(2)由AC=B得(A-1A)C=A-1B,即可求矩阵C,使得AC=B.
解答 解:(1)因为|A|=2×3-1×4=2,
所以${A^{-1}}=({\begin{array}{l}{\frac{3}{2}}&{\frac{-1}{2}}\\{\frac{-4}{2}}&{\frac{2}{2}}\end{array}})=({\begin{array}{l}{\frac{3}{2}}&{-\frac{1}{2}}\\{-2}&1\end{array}})$;
(2)由AC=B得(A-1A)C=A-1B,
故$C={A^{-1}}B=({\begin{array}{l}{\frac{3}{2}}&{-\frac{1}{2}}\\{-2}&1\end{array}})({\begin{array}{l}1&1\\ 0&{-1}\end{array}})=({\begin{array}{l}{\frac{3}{2}}&2\\{-2}&{-3}\end{array}})$.
点评 本小题主要考查矩阵、逆矩阵等基础知识,考查运算求解能力,考查化归与转化思想.
练习册系列答案
相关题目
10.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
(Ⅰ)求y关于t的回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$.
(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.
5.设a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比数列;q:(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an)2,则( )
A. | p是q的充分条件,但不是q的必要条件 | |
B. | p是q的必要条件,但不是q的充分条件 | |
C. | p是q的充分必要条件 | |
D. | p既不是q的充分条件,也不是q的必要条件 |
12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.
20.已知△ABC的面积为4,点E、F分别在边AB、AC上,且$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{BC}$,若P为线段EF上一动点,则$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{BC}$2的最小值为( )
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{3\sqrt{6}}{2}$ | C. | $\frac{8\sqrt{3}}{3}$ | D. | 3$\sqrt{3}$ |