题目内容

【题目】已知圆直线.

(1)若直线与圆交于不同的两点,当时,求的值.

(2)若是直线上的动点,过作圆的两条切线切点为究:直线是否过定点;

(3)若为圆的两条相互垂直的弦,垂足为求四边形的面积的最大值.

【答案】(1)(2)(3).

【解析】

试题分析:(1)利用点到直线的距离公式,结合点到直线的距离,即可求解的值;(2)由题意得可知四点共圆且以为直径的圆上,在圆上可得直线的方程,即可得到直线是否过定点;(3)设圆心到直线的距离分别为 ,则,表示出四边形的面积,利用基本不等式,可求求四边形的面积.

试题解析:(1) 的距离,

.

(2)由题意可知:四点共圆且在以为直径的圆上,设,

其方程为:

,即:

在圆上,

,由

直线过定点.

(3) 设圆心到直线的距离分别为 ,

.

当且仅当时,取=.

四边形的面积的最大值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网