题目内容
【题目】设函数,.
(1)若曲线在点处的切线与直线垂直,求的单调性和极小值(其中为自然对数的底数);
(2)若对任意的,恒成立,求的取值范围.
【答案】(1)单调递减区间为,单调递增区间为,极小值为;(2).
【解析】
(1)由题意可得,可求得的值,利用导数可求得函数的单调区间和极小值;
(2)由的,构造函数,可知函数在区间上单调递减,可转化为对任意的恒成立,由参变量分离法得出对任意的恒成立,求出二次函数在上的最大值,进而可得出实数的取值范围.
(1),,
由于曲线在点处的切线与直线垂直,则,可得.
此时,,定义域为,,令,得.
列表如下:
极小值 |
所以,函数的单调递减区间为,单调递增区间为,
函数的极小值为;
(2)由的,
设,则,
由于,所以,函数在上单调递减,
,由题意可知对任意的恒成立,可得,
对于二次函数,
当时,函数取得最大值,.
因此,实数的取值范围是.
【题目】学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“类解答”为评估此类解答导致的失分情况,某市教研室做了项试验:从某次考试的数学试卷中随机抽取若干属于“类解答”的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:
教师评分(满分12分) | 11 | 10 | 9 |
各分数所占比例 |
某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).
(1)本次数学考试中甲同学某题(满分12分)的解答属于“类解答”,求甲同学此题得分的分布列及数学期望;
(2)本次数学考试有6个解答题,每题满分12分,同学乙6个题的解答均为“类解答”.
①记乙同学6个题得分为的题目个数为计算事件的概率.
②同学丙的前四题均为满分,第5题为“类解答”,第6题得8分.以乙、丙两位同学解答题总分均值为依据,谈谈你对“类解答”的认识.
【题目】某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示:
(1)根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次;
(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
支付方式 | 现金 | 会员卡 | 扫码 |
比例 |
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?
参考数据:设,,,
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为:,.
【题目】在平面直角坐标系中,直线过点,倾斜角为.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程.
(1)写出直线的参数方程及曲线的直角坐标方程;
(2)若与相交于,两点,为线段的中点,且,求.
【题目】年是打赢蓝天保卫战三年行动计划的決胜之年,近年来,在各地各部门共同努力下,蓝天保卫战各项任务措施稳步推进,取得了积极成效,某学生随机收集了甲城市近两年上半年中各天的空气量指数,得到频数分布表如下:
年上半年中天的频数分布表
的分组 | |||||
天数 |
年上半年中天的频数分布表
的分组 | |||||
天数 |
(1)估计年上半年甲城市空气质量优良天数的比例;
(2)求年上半年甲城市的平均数和标准差的估计值(同一组中的数据用该组区间的中点值为代表);(精确到)
(3)用所学的統计知识,比较年上半年与年上半年甲城市的空气质量情况.
附:
的分组 | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
.