题目内容

过双曲线x2-
y2
2
=1的右焦点F作直线l交双曲线于A,B两点,若|AB|=4,则这样的直线l有(  )
A、1条B、2条C、3条D、4条
分析:双曲线的两个顶点之间的距离是2,小于4,过抛物线的焦点一定有两条直线使得交点之间的距离等于4,当直线与实轴垂直时,做出直线与双曲线交点的纵标,得到也是一条长度等于4的线段.
解答:解:∵双曲线的两个顶点之间的距离是2,小于4,
∴过抛物线的焦点一定有两条直线使得交点之间的距离等于4,
当直线与实轴垂直时,
有3-
y2
2
=1

∴y=±2,
∴直线AB的长度是4,
综上可知有三条直线满足|AB|=4,
故选C.
点评:本题考查直线与双曲线之间的关系问题,本题解题的关键是看清楚当直线的斜率不存在,即直线与实轴垂直时,要验证线段的长度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网