题目内容
【题目】设函数,已知曲线在点处的切线与直线平行
(Ⅰ)求的值;
(Ⅱ)是否存在自然数,使得方程在内存在唯一的根?如果存在,求出;如果不存在,请说明理由。
(Ⅲ)设函数(表示中的较小者),求的最大值。
【答案】(1) .
(2) 时,方程在内存在唯一的根.证明见解析.
(3) .
【解析】试题分析:(Ⅰ)求出f(x)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得;(Ⅱ)求出的导数和单调区间,最值,由零点存在定理,即可判断存在;(Ⅲ)由(Ⅱ)求得的解析式,通过的最大值,即可得到所求.
试题解析:(Ⅰ)由题意知,曲线在点处的切线斜率为,所以,
又所以.
(Ⅱ)时,方程在内存在唯一的根.
设
当时, .
又
所以存在,使.
因为所以当时, ,当时, ,
所以当时, 单调递增.
所以时,方程在内存在唯一的根.
(Ⅲ)由(Ⅱ)知,方程在内存在唯一的根,且时, , 时, ,所以.
当时,若
若由可知故
当时,由可得时, 单调递增; 时, 单调递减;
可知且.
综上可得函数的最大值为.
【题目】某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望;
(Ⅲ)若在这50名被调查者中随机发出20份的调查问卷,记为所发到的20人中赞成“车辆限行”的人数,求使概率取得最大值的整数.
【题目】数据显示,某公司2018年上半年五个月的收入情况如下表所示:
月份 | 2 | 3 | 4 | 5 | 6 |
月收入(万元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根据上述数据,在建立该公司2018年月收入(万元)与月份的函数模型时,给出两个函数模型与供选择.
(1)你认为哪个函数模型较好,并简单说明理由;
(2)试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过100万元?(参考数据,)
【题目】某校的学生文娱团队由理科组和文科组构成,具体数据如表所示:
组别 | 文科 | 理科 | ||
性别 | 男生 | 女生 | 男生 | 女生 |
人数 | 3 | 1 | 3 | 2 |
学校准备从该文娱团队中选出4人到某社区参加大型公益活动演出,每选出一名男生,给其所在的组记1分;每选出一名女生,给其所在的组记2分,要求被选出的4人中文科组和理科组的学生都有.
(I)求理科组恰好得4分的概率;
(II)记文科组的得分为X,求随机变量X的分布列和数学期望EX.
【题目】某宾馆有间标准相同的客房,客房的定价将影响入住率.经调查分析,得出每间客房的定价与每天的入住率的大致关系如下表:
每间客房的定价 | 220元 | 200元 | 180元 | 160元 |
每天的入住率 |
对于每间客房,若有客住,则成本为80元;若空闲,则成本为40元.要使此宾馆每天的住房利润最高,则每间客房的定价大致应为( )
A. 220元 B. 200元 C. 180元 D. 160元