题目内容
【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2.
表1
停车距离(米) | |||||
频数 | 24 | 42 | 24 | 9 | 1 |
表2
平均每毫升血液酒精含量毫克 | 10 | 30 | 50 | 70 | 90 |
平均停车距离米 | 30 | 50 | 60 | 70 | 90 |
回答以下问题.
(1)由表1估计驾驶员无酒状态下停车距离的平均数;
(2)根据最小二乘法,由表2的数据计算关于的回归方程;
(3)该测试团队认为:驾驶员酒后驾车的平均“停车距离”大于(1)中无酒状态下的停车距离平均数的倍,则认定驾驶员是“醉驾”.请根据(2)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?(精确到个位)
(附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,)
【答案】(1)27.1(2)(3)大于毫克时为“醉驾”
【解析】分析:(1)每个区间的中点作为估计值进行计算可得平均数;
(2)根据所给公式计算回归方程中的系数即可;
(3)由(2)解不等式可得.
详解:(1)
(2)
∴
∴回归方程为
(3)由题意知:,∴
∴预测当每毫升血液酒精含量大于毫克时为“醉驾”
练习册系列答案
相关题目
【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.
(I)请完成列联表:
优秀 | 非优秀 | 合计 | |
甲班 | |||
乙班 | |||
合计 |
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过的前提下认为成绩与班级有关系?
参考公式和临界值表:
,其中.