题目内容
【题目】设数列的首项,且,,.
(Ⅰ)证明:是等比数列;
(Ⅱ)若,数列中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.
(Ⅲ)若是递增数列,求的取值范围.
【答案】(1)见解析(2)成等差数列(3)
【解析】
(I)由,根据等比数列的定义可得结果;(II)利用(I)可得,进而得到,若中存在连续三项成等差数列,则必有,解出即可;(III )如果成立,可得,对分奇数、偶数两种情况讨论,即可得出的取值范围.
(Ⅰ)因为,且,
所以数列是首项为,公比为的等比数列;
(Ⅱ)由(Ⅰ)知是首项为,公比为的等比数列.
∴
若中存在连续三项成等差数列,则必有,
即
解得,即成等差数列.
(Ⅲ)如果成立,即对任意自然数均成立.
化简得
当为偶数时,,因为是递减数列,
所以,即;
当为奇数时,,因为是递增数列,
所以,即;
故的取值范围为.
练习册系列答案
相关题目