题目内容

【题目】将一枚骰子投掷两次,所得向上点数分别为m和n,则函数y=mx2﹣nx+1在[1,+∞)上为增函数的概率是(
A.
B.
C.
D.

【答案】D
【解析】解:函数y=mx2﹣nx+1在[1,+∞)上为增函数, 等价于导数y′=2mx﹣n≥0在[1,+∞)上恒成立.
而x≥ 在[1,+∞)上恒成立即 ≤1.
∵将一骰子向上抛掷两次,所得点数分别为m和n的基本事件个数为36个,
而满足 ≤1包含的(m,n)基本事件个数为30个,不满足题意的点共有如图中6个点.
故函数y=mx2﹣nx+1在[1,+∞)上为增函数的概率是 =
故选:D.

【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网