题目内容

A在舰B的正东6千米处,舰C在舰B的北偏西30°且与B相距4千米,它们准备捕海洋动物,某时刻A发现动物信号,4秒后BC同时发现这种信号,A发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是千米/秒,其中g为重力加速度,若不计空气阻力与舰高,问舰A发射炮弹的方位角和仰角应是多少?
仰角θ=30°
AB所在直线为x轴,以AB的中点为原点,建立如图所示的直角坐标系 由题意可知,ABC舰的坐标为(3,0)、(-3,0)、(-5,2).
由于BC同时发现动物信号,记动物所在位置为P,则|PB|=|PC|. 于是P在线段BC的中垂线上,易求得其方程为x-3y+7=0.
又由AB两舰发现动物信号的时间差为4秒,知|PB|-|PA|=4,故知P在双曲线=1的右支上.
直线与双曲线的交点为(8,5),此即为动物P的位置,利用两点间距离公式,可得|PA|=10 
据已知两点的斜率公式,得kPA=,所以直线PA的倾斜角为60°,于是舰A发射炮弹的方位角应是北偏东30°.
设发射炮弹的仰角是θ,初速度v0=,则,
∴sin2θ=,∴仰角θ=30°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网