题目内容
【题目】若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:
①;②;③;④.其中是“柯西函数”的为( )
A.①②B.③④C.①③D.②④
【答案】B
【解析】
由柯西不等式,得到函数在其图象上存在不同的两点,使得共线,转化为存在过原点的直线与的图象有两个不同的交点,进行逐项判定,即可求解.
由柯西不等式得,对任意实数恒成立,
当且仅当时取等号,
若函数在其图象上存在不同的两点,
其坐标满足条件:的最大值为0,
则函数在其图象上存在不同的两点,使得共线,
即存在过原点的直线与的图象有两个不同的交点.
对于①,方程,即,最多有1个正根,所以不是柯西函数;对于②,由图①可知不存在;因为在点处,与相切,所以最多有1个正解;
对于③,由图②可知存在;对于④,由图③可知存在.所以①②不是柯西函数,③④是柯西函数.
【题目】某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:
表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与(均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由).
(2)根据(1)的判断结果及表1中的数据,建立关于的回归方程,并预测活动推出第8天使用扫码支付的人次.
(3)推广期结束后,为更好的服务乘客,车队随机调查了100人次的乘车支付方式,得到如下结果:
表2
支付方式 | 现金 | 乘车卡 | 扫码 |
人次 | 10 | 60 | 30 |
已知该线路公交车票价2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据调査结果发现:使用扫码支付的乘客中有5名乘客享受7折优惠,有10名乘客享受8折优惠,有15名乘客享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.
参考数据:
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中.
参考公式:
对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.