题目内容

已知数列{an}的通项公式an=3n-50,则其前n项和Sn的最小值是


  1. A.
    -784
  2. B.
    -392
  3. C.
    -389
  4. D.
    -368
B
分析:先令3n-50≥0求得数列从地17项开始为正数,前16项为负,推断出数列的前n项的和中,前16项的和最小,进而利用等差数列的求和公式求得答案.
解答:令3n-50≥0求得n>16
即数列从地17项开始为正数,前16项为负,
故数列的前16项的和最小,
a16=-2,a1=-47
∴S16==-392
故选B
点评:本题主要考查了等差数列的性质,求和公式以及数列与不等式的综合.解题的关键是分析出数列的正数项或负数项.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网