题目内容

已知数列{an}的通项公式为an=2n-5,则|a1|+|a2|+…+|a10|=(  )
分析:先根据数列的通项公式弄清数列从第几项起符号发生改变,然后代入Sn=|a1|+|a2|+…+|a10|求解即可.
解答:解:∵an=2n-5
∴数列{an}的前2项为负数,从第3项起为正数数
S10=|a1|+|a2|+…+|a10|
=-a1-a2+a3+…+a10
=3+1+1+3+5+7+9+11+13+15
=68
故选A
点评:本题主要考查了数列的求和,解题的关键是弄清数列从第几项起符号发生改变,属于基础
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网