题目内容

2.已知点($\frac{5π}{12}$,0)是函数f(x)=(asinx+cosx)cosx-$\frac{1}{2}$图象的一个对称中心.
(Ⅰ)求实数a的值;
(Ⅱ)求f(x)在闭区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值及取到最值时的对应x值.

分析 (Ⅰ) 由题意将点的坐标代入解析式求出a;
(Ⅱ)由(Ⅰ)得到f(x)的解析式,由已知区间求出(2x$+\frac{π}{6}$)的范围,利用利用正弦函数的有界性求最值.

解答 解:(Ⅰ) 由题意得f(x)=(asinx+cosx)cosx-$\frac{1}{2}$=$\frac{a}{2}$sin2x+$\frac{1}{2}$cos2x…(2分)
∵f(x)关于点($\frac{5π}{12}$,0)对称,所以f($\frac{5π}{12}$)=$\frac{a}{2}sin\frac{5π}{6}+\frac{1}{2}cos\frac{5π}{6}$=0;…(5分)
解得a=$\sqrt{3}$.…(7分)
(Ⅱ)f(x)=$\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x$=sin(2x$+\frac{π}{6}$);…(9分)
设a=2x+$\frac{π}{6}$,则a∈[$-\frac{π}{6},\frac{5π}{6}$];…(11分)
∴f(x)min=f(-$\frac{π}{6}$)=$-\frac{1}{2}$;…(13分)
f(x)max=f($\frac{π}{6}$)=1..…(15分)

点评 本题考查了三角函数的化简以及利用正弦函数的性质求sin(2x$+\frac{π}{6}$);的最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网