题目内容
12.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,求f(8)+f(9)的值.分析 根据函数奇偶性的性质进行转化求解即可.
解答 解:∵f(x+2)为偶函数,
∴f(-x+2)=f(x+2),
∵f(x)是奇函数,
∴f(-x+2)=-f(x-2),
即f(x+2)=-f(x-2),
即f(x+4)=-f(x),
则f(x+8)=-f(x+4)=f(x),
则f(9)=f(1)=1,
f(8)=f(0),
∵f(x)是奇函数,
∴f(0)=0,
即f(8)=f(0)=0,
则f(8)+f(9)=1+0=1.
点评 本题主要考查函数值的计算,根据函数奇偶性的性质求出函数的周期性是解决本题的关键.
练习册系列答案
相关题目
2.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:
(1)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,中小型企业各应抽几家?
(2)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
支持 | 不支持 | 合计 | |
中型企业 | 80 | 40 | 120 |
小型企业 | 240 | 200 | 440 |
合计 | 320 | 240 | 560 |
(2)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
P(K2≥k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
3.在△ABC中,点D在线段BC上,且满足BD=$\frac{1}{2}$DC,过点D的直线分别交直线AB,AC于不同的两点M,N,若$\overrightarrow{AM}$=m$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AC}$,则( )
A. | m+n是定值,定值为2 | B. | 2m+n是定值,定值为3 | ||
C. | $\frac{1}{m}$+$\frac{1}{n}$是定值,定值为2 | D. | $\frac{2}{m}$+$\frac{1}{n}$是定值,定值为3 |
4.已知某物体一天中的温度T(℃)是时间t(h)的函数:T(t)=t2-3t+60,t=0表示中午12:00,则下午15:00时该物体的温度是( )
A. | 60℃ | B. | 58℃ | C. | 240℃ | D. | 64℃ |