题目内容
【题目】已知函数f(x)=|ax﹣1|﹣(a﹣1)x
(1)当a= 时,满足不等式f(x)>1的x的取值范围为;若函数f(x)的图象与x轴没有交点,则实数a的取值范围为 .
【答案】
(1)(2,+∞);[ ,1)
【解析】解:a= 时,f(x)=| x﹣1|+ x= , ∵f(x)>1,
∴ ,
解得x>2,
故x的取值范围为(2,+∞);函数f(x)的图象与x轴没有交点,
①当a≥1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:
两函数的图象恒有交点,
②当0<a<1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:
要使两个图象无交点,斜率满足:a﹣1≥﹣a,
∴a≥ ,故 ≤≤a<1
③当a≤0时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:
两函数的图象恒有交点,
综上①②③知: ≤a<1
所以答案是:(2,+∞),[ ,1)
练习册系列答案
相关题目
【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.
(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 | |||||||
频数 |
假设花店在这天内每天购进枝玫瑰花,求这天的日利润(单位:元)的平均数.