题目内容
【题目】某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为
(1)求该生被录取的概率;
(2)记该生参加考试的项数为,求的分布列和期望.
【答案】(1)(2)
【解析】
(1)若该生被录取,则前四项最多有一项不合格,并且第五项必须合格
记A={前四项均合格},B={前四项中仅有一项不合格}
则
又A、B互斥,故所求概率为
,
所以该生被录取的概率是;
(2)该生参加考试的项数可以是2,3,4,5.
,
,
2 | 3 | 4 | 5 | |
【题目】改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.
安全意识强 | 安全意识不强 | 合计 | |
男性 | |||
女性 | |||
合计 |
(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;
(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;
(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.
附:,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
【题目】某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,下表是在某单位调查后得到的数据(人数):
赞同 | 反对 | 合计 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合计 | 16 | 9 | 25 |
(1)能否有90%以上的把握认为对这一问题的看法与性别有关?
(2)进一步调查:
①从赞同“男女延迟退休”的人中选出人进行陈述发言,求事件“男士和女士各至少有人发言”的概率;
②从反对“男女延迟退休”的人中选出人进行座谈,设选出的人中女士人数为,求的分布列和数学期望.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |