题目内容
【题目】已知定义域为的函数在上有最大值1,设 .
(1)求的值;
(2)若不等式在上恒成立,求实数的取值范围;
(3)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).
【答案】(1)0;(2);(3)
【解析】
(1)结合二次函数的性质 可判断g(x)在[1,2]上的单调性,结合已知函数的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,结合对数与二次函数的性质可求;(3)原方程可化为|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)=0,利用换元q=|ex﹣1|,结合二次函数的 实根分布即可求解.
(1)因为在上是增函数,
所以,解得.
(2)由(1)可得:
所以不等式在上恒成立.
等价于在上恒成立
令,因为,所以
则有在恒成立
令,,则
所以,即,所以实数的取值范围为.
(3)因为
令,由题意可知
令,
则函数有三个不同的零点
等价于在有两个零点,
当 ,此时方程,此时关于方程有三个零点,符合题意;
当 记为,,且,,
所以,解得
综上实数的取值范围 .
练习册系列答案
相关题目