题目内容
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(1)求图中的值;
(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.
(参考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(1) ;(2)列联表见解析,有超过的把握认为“晋级成功”与性别有关;(3)分布列见解析,=3
【解析】
(1)由频率和为1,列出方程求的值;
(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,
填写列联表,计算观测值,对照临界值得出结论;
(3)由频率分布直方图知晋级失败的频率,将频率视为概率,
知随机变量服从二项分布,计算对应的概率值,写出分布列,计算数学期望.
解:(1)由频率分布直方图各小长方形面积总和为1,
可知,
解得;
(2)由频率分布直方图知,晋级成功的频率为,
所以晋级成功的人数为(人),
填表如下:
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | 34 | 50 |
女 | 9 | 41 | 50 |
合计 | 25 | 75 | 100 |
假设“晋级成功”与性别无关,
根据上表数据代入公式可得,
所以有超过的把握认为“晋级成功”与性别有关;
(3)由频率分布直方图知晋级失败的频率为,
将频率视为概率,
则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,
所以可视为服从二项分布,即,
,
故,
,
,
,
.
所以的分布列为:
0 | 1 | 2 | 3 | 4 | |
数学期望为.或().
练习册系列答案
相关题目