题目内容

【题目】如图,在四棱锥P﹣ABCD中,底面是边长为 的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2 ,M,N分别为PB,PD的中点.

(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.

【答案】
(1)证明:连接BD.∵M,N分别为PB,PD的中点,

∴在△PBD中,MN∥BD.

又MN平面ABCD,BD平面ABCD

∴MN∥平面ABCD


(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,在菱形ABCD中,∠BAD=120°

,得AC=AB= ,BD=

∵PA⊥平面ABCD,∴PA⊥AC

在直角△PAC中, ,AQ⊥PC得QC=2,PQ=4,由此知各点坐标如下

A(﹣ ,0,0),B(0,﹣3,0),C( ,0,0),D(0,3,0),P( ),M( ),N(

Q(

=(x,y,z)为平面AMN的法向量,则

,取z=﹣1,

同理平面QMN的法向量为

=

∴所求二面角A﹣MN﹣Q的平面角的余弦值为

方法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA= ,BD=

∵PA⊥平面ABCD,∴PA⊥AB,PA⊥AC,PA⊥AD,∴PB=PC=PD,∴△PBC≌△PDC

而M,N分别是PB,PD的中点,∴MQ=NQ,且AM= PB= =AN

取MN的中点E,连接AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A﹣MN﹣Q的平面角

,AM=AN=3,MN=3可得AE=

在直角△PAC中,AQ⊥PC得QC=2,PQ=4,AQ=2

在△PBC中,cos∠BPC= ,∴MQ=

在等腰△MQN中,MQ=NQ= .MN=3,∴QE=

在△AED中,AE= ,QE= ,AQ=2 ,∴cos∠AEQ=

∴所求二面角A﹣MN﹣Q的平面角的余弦值为


【解析】(1)连接BD,利用三角形的中位线的性质,证明MN∥BD,再利用线面平行的判定定理,可知MN∥平面ABCD;(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,求出平面AMN的法向量 ,利用向量的夹角公式,即可求得二面角A﹣MN﹣Q的平面角的余弦值;
方法二:证明∠AEQ为二面角A﹣MN﹣Q的平面角,在△AED中,求得AE= ,QE= ,AQ=2 ,再利用余弦定理,即可求得二面角A﹣MN﹣Q的平面角的余弦值.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网