题目内容
【题目】已知是各项都为正数的数列,其前项和为,且为与的等差中项.
(1)求证:数列为等差数列;
(2)求数列的通项公式;
(3)设,求的前项和.
【答案】(1)证明见解析;(2);(3).
【解析】试题分析:
(1)由数列中与的关系及条件可得,从而可得结论成立.(2)由(1)得到,故得,然后再由与的关系可求得.(3)由(2)得,根据数列项的特点,选择并项的方法求和,但需要对n进行分类讨论.
试题解析:
(1)由题意知,即,①
当n≥2时,有an=Sn﹣Sn﹣1,代入①式得
,
整理得(n≥2).
又当n=1时,由①式可得S1=1;
∴数列是首项为1,公差为1的等差数列.
(2) 由(1)可得,
∵数列{an}是各项都为正数,
∴,
∴当n≥2时,,
又满足上式,
∴.
(3)由(2)得,
当n为奇数时,
当n为偶数时,
∴数列span>{bn}的前n项和.
【题目】为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通人中随机抽取200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:
处罚金额(单位:元) | 5 | 10 | 15 | 20 |
会闯红灯的人数 | 50 | 40 | 20 | 0 |
若用表中数据所得频率代替概率.
(1)当处罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其它市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?
【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差,和患感冒的小朋友人数(/人)的数据如下:
温差 | ||||||
患感冒人数 | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合与的关系;
(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)
参考数据:.参考公式:相关系数:,回归直线方程是, ,
【题目】每当《我心永恒》这首感人唯美的歌曲回荡在我们耳边时,便会想起电影《泰坦尼克号》中一暮暮感人画面,让我们明白了什么是人类的“真、善、美”.为了推动我市旅游发展和带动全市经济,更为了向外界传递遂宁人民的“真、善、美”.我市某地将按“泰坦尼克号”原型比例重新修建.为了了解该旅游开发在大众中的熟知度,随机从本市岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该旅游开发将在我市哪个地方建成?”,统计结果如下表所示:
组号 | 分组 | 回答正确的人数 | 回答正确的人数 占本组的频率 |
第组 | |||
第组 | |||
第组 | |||
第组 | |||
第组 |
(1)求出的值;
(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;
(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄在段的概率.