题目内容

已知向量
a
=(1,cosα),
b
=(1,sinβ),
c
=(3,1),且(
a
+
b
)∥
c

(1)若α=
π
3
,求cos2β的值;
(2)证明:不存在角α,使得等式|
a
+
c
|=|
a
-
c
|成立;
(3)求
b
c
-
a
2的最小值.
分析:(1)由题意可得
cosα+sinβ=
2
3
, 
α=
π
3
可得sinβ,由二倍角公式可得cos2β;
(2)假设成立,由数量积的运算可得
a
c
=0
,即cosα=-3,矛盾;
(3)由(1)可得sinβ=
2
3
-cosα∈[-1,1]
,代入可得所求式子为关于cosα的二次函数,进而可得最值.
解答:解:∵
a
+
b
=(2,cosα+sinβ)
c
=(3,1),且(
a
+
b
)∥
c
.∴
cosα+sinβ=
2
3
, 
…(3分)
(1)∵α=
π
3
,∴cosα=
1
2
,∴sinβ=
1
6
,∴
cos2β=1-2sin2β=
17
18
. 
…(6分)
(2)假设存在角α使得等式成立则有
a
2
+2
a
c
+
c
2
=
a
2
-2
a
c
+
c
2

a
c
=0
,∴cosα=-3,不成立,∴不存在角α使得等式成立.…(11分)
(3)∵
cosα+sinβ=
2
3
, 
sinβ=
2
3
-cosα∈[-1,1]

b
c
-
a
2
=2+sinβ-cos2α=-cos2β-cosα+
8
3
=-(cosα+
1
2
)
2
+
35
12

-
1
3
≤cosα≤
5
3
,又-1≤cosα≤1,∴-
1
3
≤cosα≤1
,…(13分)
∴当cosα=1时,ymin=
2
3
.    …(16分)
点评:本题考查平行向量,以及二次函数在闭区间的最值,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网