题目内容

(极坐标与参数方程)已知点P(x,y)是曲线C上的点,以原点为极点,x轴正半轴为极轴建立坐标系,若曲线C的极坐标方程为ρ2+4ρcosθ-5=0,则使
3
x-y+a≥0恒成立的实数a的取值范围为
[6+2
3
,+∞)
[6+2
3
,+∞)
分析:曲线C的极坐标方程,化为直角坐标方程,设出P的坐标,分离参数求最值,即可确定实数a的取值范围.
解答:解:曲线C的极坐标方程为ρ2+4ρcosθ-5=0,直角坐标方程为x2+y2+4x-5=0,即(x+2)2+y2=9
∴可令x=-2+3cosθ,y=3sinθ
3
x-y+a≥0恒成立,等价于a≥-
3
x+y恒成立,即a≥2
3
-3
3
cosθ+3sinθ
∵2
3
-3
3
cosθ+3sinθ=2
3
+6sin(θ-
π
3

∴(2
3
-3
3
cosθ+3sinθ)max=6+2
3

∴a≥6+2
3

故答案为:[6+2
3
,+∞)
点评:本题考查曲线的极坐标方程,考查恒成立问题,考查函数的最值,正确分离参数是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网