题目内容
【题目】函数f(x)=log2(x+2)的定义域是( )
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)
【答案】C
【解析】解:函数f(x)=log2(x+2)有意义,
可得x+2>0,
解得x>﹣2,
则f(x)的定义域为(﹣2,+∞).
故选:C.
【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.
练习册系列答案
相关题目
【题目】某产品在某销售点的零售价x(单位:元)与每天的销售量y(单位:个)的统计数据如表所示:
x | 16 | 17 | 18 | 19 |
y | 50 | 34 | 41 | 31 |
由表可得回归直线方程 中的 ,根据模型预测零售价为20元时,每天的销售量约为( )
A.30
B.29
C.27.5
D.26.5