题目内容
16.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,实数k为大于零的常数,函数f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函数f(x)的最大值为$\frac{{\sqrt{2}-1}}{2}$.(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,若$\frac{π}{2}$<A<π,f(A)=0,且b=2$\sqrt{2}$,a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的值.
分析 (Ⅰ)利用数量积以及两角和与差的三角函数化简函数的表达式,然后利用函数的最大值求解k的值即可.(Ⅱ)求出$f(A)=\frac{{\sqrt{2}}}{2}sin(\frac{2A}{3}-\frac{π}{4})-\frac{1}{2}=0$,利用A的范围求出A的值,利用要走的路求出c,然后求解数量积的值即可.
解答 17.(本小题满分12分)
解:(Ⅰ)由已知$f(x)=\overrightarrow a•\overrightarrow b=(ksin\frac{x}{3},co{s^2}\frac{x}{3})•(cos\frac{x}{3},-k)$=$ksin\frac{x}{3}cos\frac{x}{3}-kco{s^2}\frac{x}{3}=\frac{1}{2}ksin\frac{2x}{3}-k\frac{{1+cos\frac{2x}{3}}}{2}=\frac{k}{2}(sin\frac{2x}{3}-cos\frac{2x}{3})-\frac{k}{2}$=$\frac{{\sqrt{2}k}}{2}(\frac{{\sqrt{2}}}{2}sin\frac{2x}{3}-\frac{{\sqrt{2}}}{2}cos\frac{2x}{3})-\frac{k}{2}=\frac{{\sqrt{2}k}}{2}sin(\frac{2x}{3}-\frac{π}{4})-\frac{k}{2}$…(5分)
因为x∈R,所以f(x)的最大值为$\frac{{(\sqrt{2}-1)k}}{2}=\frac{{\sqrt{2}-1}}{2}$,则k=1…(6分)
(Ⅱ)由(Ⅰ)知,$f(x)=\frac{{\sqrt{2}}}{2}sin(\frac{2x}{3}-\frac{π}{4})-\frac{1}{2}$,所以$f(A)=\frac{{\sqrt{2}}}{2}sin(\frac{2A}{3}-\frac{π}{4})-\frac{1}{2}=0$
化简得$sin(\frac{2A}{3}-\frac{π}{4})=\frac{{\sqrt{2}}}{2}$
因为$\frac{π}{2}<A<π$,所以$\frac{π}{12}<\frac{2A}{3}-\frac{π}{4}<\frac{5π}{12}$
则$\frac{2A}{3}-\frac{π}{4}=\frac{π}{4}$,解得$A=\frac{3π}{4}$…(8分)
所以$cosA=-\frac{{\sqrt{2}}}{2}=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{8+{c^2}-40}}{{2×2\sqrt{2}c}}$
化简得c2+4c-32=0,则c=4…(10分)
所以$\overrightarrow{AB}•\overrightarrow{AC}=|{\overrightarrow{AB}}||{\overrightarrow{AC}}|cos\frac{3π}{4}=4×2\sqrt{2}×(-\frac{{\sqrt{2}}}{2})=-8$…(12分)
点评 本题考查余弦定理的应用,两角和与差的三角函数,向量的数量积,考查计算能力.
A. | -$\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 6 |
乘坐里程x(单位:km) | 0<x≤6 | 6<x≤12 | 12<x≤22 |
票价(单位:元) | 3 | 4 | 5 |
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.
A. | $(-\frac{π}{3},0)$ | B. | $(-\frac{π}{6},0)$ | C. | $(\frac{π}{6},0)$ | D. | $(\frac{π}{4},0)$ |