题目内容

【题目】Sn是等差数列{an}的前n项和,已知的等比中项为,且的等差中项为1,求数列{an}的通项公式。

【答案】.

【解析】

设等差数列{an}的首项为a1,公差为d,运用等差中项和等比中项的定义,利用等差数列的求和公式,代入可求a1,d,解方程可求通项an

设等差数列{an}的首项,公差为,则通项为

项和为,依题意有,

其中,由此可得,

整理得, 解方程组得,

由此得;或.

经检验均合题意.

所以所求等差数列的通项公式为.

【点睛】

本题主要考查了等差数列的通项公式和性质及等比数列中项的性质,数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用。

型】解答
束】
20

【题目】等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.

(1)anbn

(2)

【答案】(1)an=2n+1,bn=8n1.(2)

【解析】

(1)设{an}的公差为d,{bn}的公比为q,由题设条件建立方程组解方程组得到dq的值,从而求出anbn;(2)由Sn=n(n+2),知,由此可求出的值.

(1){an}的公差为d,{bn}的公比为q,则d为正数,

an=3+(n-1)dbnqn1

依题意有

解得 (舍去).

an=3+2(n-1)=2n+1,bn=8n1.

(2)Sn=3+5+…+(2n+1)=n(n+2).

所以+…++…+

(1-+…+)

(1+)

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网