题目内容
(本小题满分14分)
已知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357231831284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723199647.png)
(Ⅰ)求
;
(Ⅱ)判断并证明
的奇偶性与单调性;
(Ⅲ)若对任意的
,不等式
恒成立,求
的取值范围。
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357231831284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723199647.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723230491.png)
(Ⅱ)判断并证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723230491.png)
(Ⅲ)若对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723261423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357232921037.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723308312.png)
(1)则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723324999.png)
;(2)函数
为奇函数。证明见解析。
(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723324999.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723480520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723230491.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723526755.png)
试题分析:(1)利用换元法:令t=logax⇒x=at,代入可得f(t)从而可得函数f(x)的解析式
(2)由(1)得f(x)定义域为R,可求函数的定义域,先证奇偶性:代入f(-x)=-f(x),从而可得函数为奇函数。再证单调性:利用定义任取x1<x2,利用作差比较f(x1)-f(x2)的正负,从而确当f(x1)与f(x2)的大小,进而判断函数的单调性
(3)根据上面的单调性的证明以及定义域得到不等式的求解。
解:(1)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723558806.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357237141884.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723480520.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357237452159.png)
∴函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723230491.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723792428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723823737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723854728.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723870235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723901807.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723916799.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357239321374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357239631387.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357239791311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357240411380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724119574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357241351132.png)
类似可证明当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357241661033.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724182608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724213644.png)
(3)不等式化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232357242441650.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724213644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724291861.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724306667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724322169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724353428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235724369933.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723308312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235723526755.png)
点评:解题的关键是利用奇偶性的定义③利用定义判断函数单调性的步骤(i)任设x1<x2(也可x1>x2)(ii)作差f(x1)-f(x2)(iii)定号,给出结论.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目