题目内容
【题目】已知椭圆,且椭圆C上恰有三点在集合中.
(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.
(3)在(2)的条件下,求面积的最大值.
【答案】(1)(2)点O到直线AB的距离为定值(3)
【解析】
(1)利用椭圆的对称性得椭圆必过和,结合椭圆过点,求得的值,从而得到椭圆的方程;
(2)设,,对直线的斜率进行讨论,当斜率存在时设为,
由得,代入点到直线的距离公式可得答案;
(3)将弦表示成关于的函数,利用基本不等式求得弦的最大值,再代入三角形的面积公式,求得三角形面积的最大值.
(1)和关于原点对称,故由题意知,椭圆C必过此两点
,又当椭圆过点时,,∴,
此时满足,符合题意.
所以椭圆.
又当椭圆过点时,,∴,
此时,不符合题意.
综上:椭圆.
(2)设,,若斜率存在,则设直线,
由,得,
,
由知,
,
代入得,
又原点到直线AB的距离,
且当AB的斜率不存在时,,可得,依然成立.
所以点O到直线AB的距离为定值.
(3)由(2)知,
由(2)知,,
;
因为,当且仅当,即时等号成立.
所以;
易知当AB斜率不存在时,,所以,
综上得的面积的最大值为.
练习册系列答案
相关题目
【题目】有两种理财产品和,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
产品:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
注:
(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;
(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.