题目内容
函数f(x)=2x2-2ax+3在区间[-1,1]上最小值记为g(a).(1)求g(a)的函数表达式;(2)求g(a)的最大值.
(1)g(a)=(2)g(a)max=3
解析
设函数,.(1)解方程:;(2)令,,求证:(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.
已知函数(1)判断函数的奇偶性;(2)试用函数单调性定义说明函数在区间和上的增减性;(3)若满足:,试证明:.
画出下列函数的图象.(1)y=2x-1,x∈Z,|x|≤2;(2)y=2x2-4x-3(0≤x<3);(3)y=(lgx+|lgx|).
判断下列函数的奇偶性:(1)f(x)=x3-;(2)f(x)=;(3)f(x)=(x-1);(4)f(x)=.
已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.(1)求证:f(x)为奇函数;(2)求证:f(x)在R上是减函数;(3)求f(x)在[-3,6]上的最大值与最小值.
设V为全体平面向量构成的集合,若映射f:V→R满足:对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.现给出如下映射:①f1:V→R,f1(m)=x-y,m=(x,y)∈V;②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.分析映射①②③是否具有性质p.
已知函数(a为常数)在x=1处的切线的斜率为1.(1)求实数a的值,并求函数的单调区间,(2)若不等式≥k在区间上恒成立,其中e为自然对数的底数,求实数k的取值范围.
已知f(x)=2x,g(x)=3-x2,试判断函数y=f(x)-g(x)的零点个数.