题目内容
【题目】如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.
(1)求的值;
(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.
【答案】(1);(2).
【解析】
试题分析:(1)联立直线的方程和抛物线的方程,化简写出根与系数关系,由于直线平分,所以,代入点的坐标化简得,结合跟鱼系数关系,可求得;(2)设,,,由三点共线得,再次代入点的坐标并化简得,同理由三点共线,可得,化简得,故.
试题解析:
(1)由,整理得,
设,,则,
因为直线平分,∴,
所以,即,
所以,得,满足,所以.
(2)由(1)知抛物线方程为,且,,,
设,,,由三点共线得,
所以,即,
整理得:,①
由三点共线,可得,②
②式两边同乘得:,
即:,③
由①得:,代入③得:,
即:,所以.
所以.
练习册系列答案
相关题目
【题目】某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:
甲类 | 乙类 | |
男性居民 | 3 | 15 |
女性居民 | 6 | 6 |
(Ⅰ)根据上表中的统计数据,完成下面的列联表;
男性居民 | 女性居民 | 总计 | |
不参加体育锻炼 | |||
参加体育锻炼 | |||
总计 |
(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?
附:,其中.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |