题目内容

8.已知函数f(x)是定义在R上的偶函数,且当x≥0时,$f(x)={(\frac{1}{2})^x}$.
(1)求f(-1)的值;    
(2)求函数f(x)的值域A;
(3)设$g(x)=\sqrt{-{x^2}+(a-1)x+a}(a>-1)$的定义域为集合B,若A⊆B,求实数a的取值范围.

分析 (1)根据偶函数的性质可知,只需研究x≥0时,f(x)的取值范围即为函数的值域,根据指数函数的单调性可求出所求;
(2)根据偶次根式的被开方数大于等于0,以及A⊆B建立关系式,可求出a的取值范围

解答 解:(1)∵x≥0时,f(x)=($\frac{1}{2}$)x,∴f(1)=($\frac{1}{2}$)1=$\frac{1}{2}$.
又∵函数f(x)是定义在R上的偶函数,
∴f(-1)=f(1)=$\frac{1}{2}$;  
(2)由函数f(x)是定义在R上的偶函数,
可得函数f(x)的值域A即为x≥0时,f(x)的取值范围,
当x≥0时,0<($\frac{1}{2}$)x≤1,故函数f(x)的值域A=(0,1];
(3)∵$g(x)=\sqrt{-{x^2}+(a-1)x+a}(a>-1)$,
∴定义域B={x|-x2+(a-1)x+a≥0},
由-x2+(a-1)x+a≥0得x2-(a-1)x-a≤0,
即 (x-a)(x+1)≤0,
∵A⊆B∴B=[-1,a]且a≥1,
∴实数a的取值范围是{a|a≥1}.

点评 本题主要考查了函数奇偶性的性质,以及函数的单调性和一元二次不等式的解法,同时考查了计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网