题目内容

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.

(1);(2) ;(3) 直线与圆相切,证明见解析.

解析试题分析:(1)要求椭圆的方程,就要知道a,b,由点A知道a=2,由离心率可求得c,由a2=b2+c2进而求出b=1;(2)求动点的轨迹方程,首先设,利用用C点表示P点坐标,,代入椭圆方程,从而得到动点C的轨迹;(3)直线与圆的位置关系有三种,相交,相切,相离,判断的方法是圆心到直线的距离与半径的关系,如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交d<r;直线l与⊙O相切d=r;直线l与⊙O相离d>r;求出圆心到直线的距离后和半径进行比较,可得直线与圆的位置关系.
试题解析:(1)由题意可得


∴椭圆的方程为
(2)设,由题意得,即
,代入得,即
即动点的轨迹的方程为
(3)设,点的坐标为
三点共线,




∴点的坐标为,点的坐标为
∴直线的斜率为



∴直线的方程为
化简得
∴圆心到直线的距离
∴直线与圆相切.
考点:1.椭圆;2.动点轨迹;3.直线与圆的位置关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网