题目内容
【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成,,,,,六组,得到如下频率分布直方图.
(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.
【答案】(1)79;(2)
【解析】
(1)首先根据频率分布直方图计算出答对题数的平均数,由此求得成绩的平均分的估计值.
(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.
(1)因为答对题数的平均数约为.
所以这40人的成绩的平均分约为.
(2)答对题数在内的学生有人,记为,;
答对题数在内的学生有人,记为,,.
从答对题数在内的学生中随机抽取2人的情况有,,,,,,,,,,共10种,
恰有1人答对题数在内的情况有,,,,,,共6种,
故所求概率.
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为优等品;指标在区间的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:
甲种生产方式:
指标区间 | ||||||
频数 | 5 | 15 | 20 | 30 | 15 | 15 |
乙种生产方式:
指标区间 | ||||||
频数 | 5 | 15 | 20 | 30 | 20 | 10 |
(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;
(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?
【题目】某校抽取了100名学生期中考试的英语和数学成绩,已知成绩都不低于100分,其中英语成绩的频率分布直方图如图所示,成绩分组区间是,,,,.
(1)根据频率分布直方图,估计这100名学生英语成绩的平均数和中位数(同一组数据用该区间的中点值作代表);
(2)若这100名学生数学成绩分数段的人数y的情况如下表所示:
分组区间 | |||||
y | 15 | 40 | 40 | m | n |
且区间内英语人数与数学人数之比为,现从数学成绩在的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在的概率.