ÌâÄ¿ÄÚÈÝ
µÈ±ÈÊýÁÐ{an} ÖУ¬a1£¬a2£¬a3·Ö±ðÊÇϱíµÚÒ»¡¢¶þ¡¢ÈýÐÐÖеÄijһ¸öÊý£¬ÇÒa1£¬a2£¬a3ÖеÄÈκÎÁ½¸öÊý²»ÔÚϱíµÄͬһÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an} µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁÐ {bn} Âú×ã bn=
£¬¼ÇÊýÁÐ {bn} µÄÇ°nÏîºÍΪSn£¬Ö¤Ã÷Sn£¼
£®
µÚÒ»ÁÐ | µÚ¶þÁÐ | µÚÈýÁÐ | |
µÚÒ»ÐÐ | 3 | 2 | 10 |
µÚ¶þÐÐ | 6 | 4 | 14 |
µÚÈýÐÐ | 9 | 8 | 18 |
£¨¢ò£©ÈôÊýÁÐ {bn} Âú×ã bn=
1 | ||
(n+2)log3(
|
3 |
4 |
£¨I£©µ±a1=3ʱ£¬²»ºÏÌâÒ⣻
µ±a1=2ʱ£¬µ±ÇÒ½öµ±a2=6£¬a3=18ʱ£¬·ûºÏÌâÒ⣻
µ±a1=10ʱ£¬²»ºÏÌâÒ⣮¡£¨4·Ö£©£¨Ö»ÒªÕÒ³öÕýÈ·µÄÒ»×é¾Í¸ø3·Ö£©
Òò´Ëa1=2£¬a2=6£¬a3=18£¬
ËùÒÔ¹«±Èq=3£¬¡£¨4·Ö£©
¹Êan=2•3n-1£®¡£¨6·Ö£©
£¨II£©ÒòΪbn=
£¬
ËùÒÔbn=
¡£¨9·Ö£©
ËùÒÔSn=b1+b2+b3+¡+bn¡£¨10·Ö£©
=
+
+
+ ¡+
¡
=
(1-
+
-
+
-
+¡+
-
)¡£¨12·Ö£©
=
(1+
-
-
)£¼
£¬
¹ÊSn£¼
£®¡£¨14·Ö£©
µ±a1=2ʱ£¬µ±ÇÒ½öµ±a2=6£¬a3=18ʱ£¬·ûºÏÌâÒ⣻
µ±a1=10ʱ£¬²»ºÏÌâÒ⣮¡£¨4·Ö£©£¨Ö»ÒªÕÒ³öÕýÈ·µÄÒ»×é¾Í¸ø3·Ö£©
Òò´Ëa1=2£¬a2=6£¬a3=18£¬
ËùÒÔ¹«±Èq=3£¬¡£¨4·Ö£©
¹Êan=2•3n-1£®¡£¨6·Ö£©
£¨II£©ÒòΪbn=
1 | ||
(n+2)log3(
|
ËùÒÔbn=
1 |
n(n+2) |
ËùÒÔSn=b1+b2+b3+¡+bn¡£¨10·Ö£©
=
1 |
1¡Á3 |
1 |
2¡Á4 |
1 |
3¡Á5 |
1 |
n¡Á(n+2) |
=
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
¹ÊSn£¼
3 |
4 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿