题目内容

【题目】已知向量 ,函数 . (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为△ABC三个内角A,B,C的对边,若 ,a=2,求b+c的取值范围.

【答案】解:(Ⅰ)∵ = = = =

,得

∴函数f(x)的单调递增区间为
(Ⅱ)由 ,得


,或A=π+2kπ,k∈Z,
∵0<A<π,∴
由余弦定理得a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,

即b+c≤4.
又∵b+c>a=2,
∴2<b+c≤4.
【解析】(Ⅰ)由已知结合数量积的坐标运算得到f(x),降幂后利用辅助角公式化简,由复合函数的单调性求得函数f(x)的单调递增区间;(Ⅱ)由 求得角A,再由余弦定理结合基本不等式求得求b+c的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网