题目内容
【题目】设的内角A,B,C的对边分别为a,b,c,,且B为钝角,
(1);(2)求的取值范围
【答案】(1)B=+A.(2)(,]
【解析】分析:(I)由题意及正弦定理,得,进而得,即可求解;
(II)由(I)知,,得到,又由三角恒等变式的公式得,进而看求解其取值范围.
详解:(I)由a=btanA及正弦定理,得,所以sinB=cosA,即 sinB=sin(+A).
又B为钝角,因此+A(,A),故B=+A.
(II)由(I)知,C=-(A+B)=-(2A+)=-2A>0,所以A,
于是sinA+sinC=sinA+sin(-2A)= sinA+cos2A=-2A+sinA+1
=-2(sinA-)+ 因为0<A<,所以0<sinA<,因此 由此可知sinA+sinC的取值范围是(,]
【题目】利用随机模拟的方法可以估计图中由曲线与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND( ),b=RAND( );② 做变换,令x=2a,y=2b;③产生N个点(x,y),并统计落在阴影内的点(x,y)的个数,已知某同学用计算机做模拟试验结果,选取了以下20组数据(如图所示),则据此可估计S的值为____.
x | y | y-0.5*x*x |
0.441414481 | 1.849136261 | 1.751712889 |
1.836710045 | 0.508951247 | -1.177800647 |
1.389538592 | 0.999398689 | 0.033989941 |
0.745446842 | 1.542498362 | 1.264652865 |
0.981548556 | 1.928476536 | 1.446757752 |
1.87036015 | 1.287100762 | -0.462022784 |
1.20252176 | 1.271691664 | 0.548662372 |
1.931929493 | 0.920911487 | -0.945264297 |
0.450507939 | 1.561663263 | 1.460184562 |
1.356178263 | 1.856227093 | 0.936617353 |
0.408489063 | 1.564834147 | 1.481402489 |
0.163980707 | 0.135034106 | 0.121589269 |
1.868152447 | 0.350326824 | -1.394669959 |
0.252753469 | 1.287326597 | 1.255384439 |
1.253648606 | 1.872701968 | 1.086884555 |
0.679831952 | 0.140283887 | -0.090801854 |
1.544339084 | 0.804655288 | -0.387836316 |
1.563089931 | 0.872844524 | -0.348780542 |
1.17458008 | 0.867440167 | 0.177620985 |
1.057219794 | 1.791271879 | 1.232415032 |