题目内容

【题目】在三棱锥中,是边长为的等边三角形,分别是的中点

)求证:平面

)求证:平面平面

)求三棱锥的体积.

【答案】)见解析()见解析

【解析】本题主要考查直线与平面平行的判定,以及平面与平面垂直的判定和三棱锥的体积的计算,体积的求解在最近两年高考中频繁出现,值得重视.

(1)欲证OD∥平面PAC,根据直线与平面平行的判定定理可知只需证OD与平面PAC内一直线平行,而OD∥PA,PA平面PAC,OD平面PAC,满足定理条件;

(2)欲证平面PAB⊥平面ABC,根据面面垂直的判定定理可知在平面PAB内一直线与平面ABC垂直,而根据题意可得PO⊥平面ABC;

(3)根据OP垂直平面ABC得到OP为三棱锥P-ABC的高,根据三棱锥的体积公式可求出三棱锥P-ABC的体积.

解:分别为的中点,

平面平面

平面. ………………5分

)连结

中点,,

.

同理, .

,,

.

,,,

平面.

平面平面平面.…………………10

可知垂直平面

为三棱锥的高,且

. …………………………14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网