题目内容
去城市旅游有三条不同路线,甲、乙两位同学各自选择其中一条线路去城市旅游,若每位同学选择每一条线路的可能性相同,则这两位同学选择同一条路线的概率为( )
A. B. C. D.
设函数为偶函数,且;满足,当时,,则当时,( )
A. B.
C. D.
设,且,则( )
已知是等差数列,满足,数列满足,且为等比数列.
(1)求数列和的通项公式;
(2)求数列的前项和.
下列判断错误的是( )
A.命题“”的否定是“”
B.“”是“”的充分不必要条件
C. 若“”为假命题,则均为假命题
D.命题“若,则或”的否命题为“若,则且”
已知椭圆的焦距为2,左、右顶点分别为,是椭圆上一点,记直线的斜率为,且有.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,以为直径的圆经过原点,且线段的垂直平分线在轴上的截距为,求直线的方程.
已知椭圆方程为,分别是椭圆长轴的左、右端点,是椭圆上关于轴对称的两点,直线的斜率分别为,若,则椭圆的离心率为 .
已知直线:,半径为2的圆与相切,圆心在轴上且在直线的右上方.
(1)求圆的方程;
(2)若直线过点且与圆交于,两点(在轴上方,在轴下方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.
2009年推出一种新型家用轿车,购买时费用为万元,每年应交付保险费、养路费及汽油费共万元,汽车的维修费为:第一年无维修费用,第二年为万元,从第三年起,每年的维修费均比上一年增加万元.(1)设该辆轿车使用年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为,求的表达式;(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?