题目内容
由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y="f" -1(x)能确定数列{bn},bn=" f" –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=确定数列{an}的自反数列为{bn},求an;
(2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.
(1)an=
(2)Sn=,证明略
(3)0<a<–1
解析
练习册系列答案
相关题目